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Abstract

In this report, the author will discuss how semi-
supervised learning (SSL) can be used in kernel re-
gression, particularly Nadaraya-Watson estimator(NW
estimator). SSL here refers to the statistical approach
to leverage both labeled and unlabeled to generate
better results in terms of mean square error and con-
fidence interval. More specifically, we explore how the
mixture of two estimator with different convergence
rate may generate a hybrid estimator of faster conver-
gence.

Introduction

The method of SSL is powerful in that it not only
focuses on predicting the unobserved points, but also
lays emphasis on explore unspecified patterns (Chape-
lle et al., 2009). This helps boost the performance of
estimators when labeled data are sparse and expen-
sive to collect while unlabeled data can be relatively
easily obtained. Under the context of NW estimator,
the classical estimator and the self-supervised estima-
tor using labeled and unlabeled data will be merged
into a hybrid estimator. The asymptotic distribution,
mean square error(MSE) and confidence interval(CI)
of the hybrid estimator will be calculated to demons-
trate the effectiveness of SSL. Finally, simulations will
be carried out to visualize the performance of each es-
timator. We intend to show that the choice of (h, g) is
of great importance and the decision depends largely
on the objective of research.

Methodology

Supervised Estimator is the estimator that utilize
labelled data and adopt the form of Nadaraya-Watson
estimator, denoted as m̂(x). And xi are iid random
variables with density p(x).
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Self-supervised Estimator leverages unlabelled da-
ta. The variables are denoted in a similar way as the
case of NW estimator. Note that the value of wi com-
pletely rely on the prediction of previous NW estima-
tor. And under most circumstances, the distribution
of ui is identical to that of xi .
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Hybrid Estimator is formulated as a convex combi-
nation of the preceding estimators.

To compute the limiting distribution of supervised es-
timator(converge quicker) and self-supervised estima-
tor(converge slower) and that their mixing actually can
generate a hybrid estimator of higher convergence ra-
te, we make use of the Lyapunov́ı Central Limit
Theorem for Triangular Arrays. By quoting this
theorm, we are able to extract out the asymptotic nor-
mal terms with lower order and express m̂(x) and r̂(x)
as the following, where t̂(x) and ŝ(x) are asymptotic
normal random variables with order 1.

m̂(x) = m(x) + (nhn)
−1/2t̂(x) (9)

r̂(x) = m̂(x) + (mgm)
−1/2ŝ(x) (10)

Pushing the induction further, we are able to derive
the asymptotic distribution of ŷc(x). Its mean square

error(MSE) is of order 1
nhn

+ h4n
mg3

m
, which will smaller

than the typical MSE of NW estimator, 1
nhn

+ h2n when
m, gm are chosen carefully. Moreover, we can construct
a confidence interval based on this instead of just a
point estimation. These ideas are demostrated in the
experiments below.

Experiments

Objective of the first experiment is to demonstrate
how hybrid estimator behaves under different choice
of parameters: m(x) = x2, and n = 32, 64, 128,m =
n10/19. Grid search for optimal (h, g) is done to find
the smallest MSE and coverage error. It seems that the
optimal choice of h for hybrid estimator is in very close
to that of NW estimator, but still a smaller minimal
MSE. This agrees with the formula and expectation.

Just as NW estimator, (h, g) influences the perfor-
mance of hybrid estimator dramatically. In fact the
optimal choice of bandwidth depends on the objective
of operation, i.e. whether mean square error or confi-
dence interval is at concern. Based on two subsequent
figures, conclusion can be drawn that the pair of (h, g)
that provides the smallest mean square error doesn’t
necessarily secure the best performance in terms of
coverage probability.

The simulation unveils two issues and we have made
some attempts to address them. In real life situations,
grid search is not practical and cross-validation may be
adopted to carry out bandwidth selection. Meanwhile,
normal approximation in the proposed estimator may
not be satisfactory enough given its slow convergence
rate. This problem may be avoided by Bootstrap.

Results and Discussion

The main findings are related to the choice of h and g.
Firstly, bandwidth selection holds the key to optimal
estimation in the proposed hybrid estimator as it is in
kernel regression. When chosen wisely, hybrid estima-
tor outperforms NW estimator significantly. Secondly,
the choice of (h,g) varies according to the purpose of
estimation. The pair of h and g that generates best
MSE does not lead us directly to the optimal con-
fidence. Nevertheless, with smallest length, the con-
fidence interval construct using hybrid estimator still
gives around 90% of true coverage and the coverage
becomes better as n and m increase.
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